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Abstract

This work introduces the concept of * - involution in 3 - prime near-ring N together with its semi group ideal S and it
establishes some results on N as well as S involving *- involution. In addition, examples are given to demonstrate the
essentialities of 3- primeness in the hypothesis of our theorems. Finally, we conclude it with some open problems.
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1. Introduction

By a right near-ring we shall mean a non-empty set N
endowed with two associative operations called addition
(+) and multiplication (denoted by (+) and (-),
respectively) satisfying the following conditions

(i) (N ,+) is an additive group (not necessarily abelian)
(i) (N, +) isasemigroup

(iii) Multiplication(+) distributes over addition(+) from
the right (denoted by

(x+y) z=xz+yzVx,y,z €N)

A right near-ring N is said to be zero symmetric if x - 0 =
0V x € N(evoking that right distributive gives0-x =
0). Educing that N is said to be 3 prime near-ring, will
have the property that aNb = {0} for a,b € N implies
a=0orb = 0. Normal subgroup S of (N, +) is said to
beanideal of Nif SN € Sanda(b +s) —ab €S fors €
Sanda,b €N.

A map *: N - N is said to be x —involution if for x,y €
N, () (x+y)=x"+y", (i) (xy)"=x"y", (iii)
(x)* = x.

A near-ring N equipped with an * —involution is called a
near-ring with * —involution or * — near-ring. We refer
the reader to the books of Clay [6], Meldrum [9] and Pilz
[11] for the near-ring theory and its applications. Recall
that a near-ring N is called 0 —prime if the product of any
two of its ideals is non-zero. In addition, a near-ring N is
called 3 —prime if for any non-zero x,y € N, xNy # {0}
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[7, 12]. Posner published his paper [13] in 1957; various
authors have investigated the properties of derivations of
prime and semi prime rings. Existence important ring
theory tools [4], these outcomes are one of the sources of
the developments of such theories as the theory of
differential identities [8] and the theory of Hopf algebra
action on rings [8], [10]. The study of derivations of near-
rings was initiated by Bell and Mason in 1997 [2], but up
to now only a few papers on 3-prime near-rings were
published.

Bell, Boua, and Oukhtite [4] generalized some results
known in this field involving the semi group ideal instead
of entire near-rings. From these observations, one can ask
a natural question “Can one apply the * —involution on
the structure of a 3 — prime near-ring N and its semi
group ideal S? The aim of this paper is to give an
affirmative answer to this question. In Section 2, we
establish that a 3- prime near-ring N with * —involution is
an associative ring (or simply a ring). Section 3, devotes
the result on semi group ideal of N with * —involution
becomes a ring. Also, we construct an example which
establishes that our Theorems do not hold even for simple
0-prime near-rings with a right identity element.

2. On 3- prime near-ring with * —involution

In this section, we establish the following result.
Theorem 2.1

Let N be a 3- prime near-ring with * —involution. Then N
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isaring.
Proof

Assume that * is an involution (*+ —involution) on N. We
claimthat N is aring.
We break the proof in two steps.

Step 1

We prove the multiplication on N satisfies left distributive
law, that is
x(y+z)=xy+xz forall x,y,z €N (2.1)
Using the properties (iii), (ii) and (i) in the definition of =
—involution and right distributive law, we have

xy+2) = ((x0+2)) =((y+2°x) ="+
%) = @ +zx) =) + (x2))
=((y))* + ((x2)")" =xy + xz.

This completes the proof of Step 1.
Step 2

We show that addition on N is abelian (viz: (N,+) is
abelian)

Replace x by (y + z) and y and z by w in the relation
(2.1) to get

+z2)w+w) =@ +2)w+ Y +2)w

forany w,y,z € N.

+2w+w) = yw+zw+yw + zw
forany w,y,z€N (2.2)

+z2)w+w) =yw+w) +z(w+w)
forany w,y,z € N.

+2w+w) = yw+yw+zw + zw
forany w,y,z € N. (2.3)

Combining with the relations (2.2) and (2.3), we find
that

yw+zw +yw+zw = yw +yw + zw + zw
forany w,y,z € N.

forany w,y,z € N.
forallw,y,z € N.

zw +yw = yw + zw
(z+y)-G+2))w=0

This implies that ((z + y )- (y + z))N = {0}  for all
v,z € N. (2.4)
In view of the result of Bell and Mason [2, Lemma 1.2
()], and relation (2.4), we have

(z+y)—(y+2)=0. This implies z+y=y+z
forall y,z € N.

Hence, (N, +) is an additive abelian group. From Step 1
and Step 2, we see that a 3-prime near-ring N becomes a
ring.m

Remark 2.3

The following example shows that the condition of 3-
prime near-ring in Theorem 2.1 is essential.

Example 2.4
Take a non-commutative near-ring M and define

0 a f
N=[<O 0 0>|a,ﬁeM},andamap*:N—>N
0 0 O

0 x v\ 0 0 «x
by (0 0 0 > =<0 0 y>forall X,y € M.
0 0 O 0 0 O

Then = is an involution (* —involution) on N, but N is
neither a 3- prime near-ring nor a ring. For instance

For * —involution on N

Condition (i) (x +y)* =x*+y* and (iii) (x*)* =x,

0 x5 x 0 » »
wherex=10 0 0| andy=|0 0 o0 | for

0 0 O 0 0 O

all x; x,,y,y, €S, are straightforward.

0 x; x\/0 yi ¥»\|
(i) (xy)*=[(0 0 0)(0 0 0)] =
0 0 0/\0 O O
0 0 O\ 0 0 O
e Rt
0 0 O 0 0 O

0 0 x\/0 0 0 0 O
yix* = (0 0 xz) 0 0 y2> = (0 0 0)
0 0 0/\0 O O 0 0O

Implies (xy)*= y* x*.
N is not a 3-prime near-ring
We have
0 x; x\/0 a B\/0 ¥ ¥
xNy=10 0 o0 0 0]J{0 0 O |=
0 0 0/\0 0 O0O/\0 0 O

0 0 0
(0 0 0>, butx # 0and y # 0.
0 0 0

From the above observations, one can easily see that N is
notaring. m

94



Moharram A. Khan et al / International journal of research in engineering and innovation, vol 1, issue 3 (2017), 93-96

3. Semi group ideal with = — involution
We begin with the following definition
Definition 3.1

A non- empty subset S of N is called semi group right
ideal (resp. semi group

left ideal) of N if SN < N (resp. NS < N ); and S is said
to be a semi group ideal if it is both a right semi group
ideal as well as a left semi group ideal of N.

Example 3.2

Let N = {0,a,B,y} with addition and multiplication
tables defined as follows.

TakingU = {0,a}, V = {0,a,8} and W = (0,a,v},
then VV, W are semi group right ideals of N and U is a semi
group ideal of N.

+ 0O |la| B |Y : 0O la|B Y

0 0 la| B |vy 0| 0]J]O]O]O

a a |0y | B a | 0 |0 |a]|a

B|1Bly|O0 |a Bl O |a|B|B

y |y |B| 0 |a Yyl | O0OJelyly
Theorem 3.1

Let N be a 3- prime near-ring and S a semi group ideal. In
addition, if S admits

* — Involution then N is aring.

In order to prove this theorem, we first state the result, due
to Bell [2].

Fact 3.2

Let S be a non-zero semi group ideal of a 3-prime near-
ring N with x € N. given xS = {0} or Sx = {0} then x =
0.

Proof of Theorem 3.1

Keeping in mind the proof of Step 1 for entire 3-prime

near-ring N, for the sake of convenience, we prove it for
every a, b, ¢ in semi group ideal S of N.

ab+c)=((ab+0)) = (b +0)a) = (b'a” +
C*a*)* - (b*a*)* + (C*a*)* — a**b** + a**c**.

This implies that

a(b+c)=ab+ac forall a,b,c €S. (3.1)
Replacing mb for b and nb for c in (3.1), we get

a(mb +nb) =amb +anb forall a,b,c €S.

[a(m+n) — (am +an)]lb =0 forall a,b,c €S
m,n € N. But, forall b €5, also

[a(m + n) — (am + an)]S = {0} (3.2)
Using Fact 3.2 and (3.2), we find that

Im+n)=Im+inVvVIimneN

Hence, the multiplication of N satisfies left distributive
law, (N, +) is an additive abelian group from Step 2 of
Theorem2.1. m

Corollary 3.3

Let N be a 3-prime near-ring and S is a non- zero ideal of
N. If S admits * —involution, then N is a ring.

Proof of the Corollary 3.3 follows immediately from
Theorem3.1. m

Remark 3.4

We construct an example which shows that Theorem 3.1
does not hold even for simple 0-prime near-rings with a
right identity element.

Example 3.5

Suppose that M be a linear space with a basis B =
{em,e;,es3,... ey} Over a field K of characteristic # 2.
Define a multiplication -: M xM - M by the rule
mn =0 for all mneM with né{ey,—ey} and
mey =m, m(—ey) = —m. Itiseasily seen that M is
a right near-ring. Also M is a zero symmetric right near—
ring with respect to this multiplication (See [1]).

Next, we show that M is a near-ring with the right
identity e,,. Take a non-zero semi group ideal S of M. Let
ey € S.Then M = Me,, cS. This is a contradiction. Thus
em&S. If nesS, then eithern+ey # —ey oOrn+
(—ey) # ey. From the first case, it is easily seen that
ey +n #ey. Thus m(ey +n) =0 for all m e M.
since S is a semi group ideal, we write m = m( ey +n)
—mey €S, for allm € M. This implies that Mc S, a
contradiction. Hence M is a right near-ring with
identity e,, . Trivially, M is not a ring.

4. Open questions

In retrospect, we would like to open the questions for
further studies as given below.

Question 1: Can the hypothesis that 3-prime be removed
from the assumptions in Theorem 2.1 and Theorem 3.1?
Question 2: Can the hypothesis that semi group ideal be
removed from the assumptions in Theorem 3.1?
Question 3: Can the hypothesis that * —involution be
removed from the assumptions in Theorem 2.1 and
Theorem 3.1?
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